

Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

THE VELIGER

APPENDIX

USNM No.	Formation	Description
701-1	Wolfcamp (bed 2)	About 1410m elevation on south side of hill, 1.392 km south 69° west of Hill 5060,
702	Leonard, upper part (original Leonard of P. B. King)	Wolfcamp Hills, Hess Canyon quadrangle, Texas Slopes on south side of road, 320 to 800m east of Split Tank, 2.4 km northeast of road fork near old Word Ranch, about 30 km NNE of Marathon, Hess Canyon quadrangle, Twas
703	Word (ls. no. 1)	Lens with goniatites in platy limestone near top of slope 800 m SW of road forks iust NE of old Word Banch. Hess Canyon guadrangle Texas
703-a	Uppermost Leonard (Aulosteges bed)	On NW side of road between road fork and sheep tank, 320m N 10° E of Old Word Ranch, Hess Canyon quadrangle, Texas
703-bs	Base of Cathedral Mtn.	Smooth, light grey ls. containing <i>Stratifera</i> -like shells just on rocks of Hess lithology
703-с	Word (ls. no. 1)	Crest of slope 400 m to 800 m SW of road fork near old Word Ranch, 27 to 29km NNE of Marathon, Hess Canyon quadrangle, Texas. Sponge bed. Basal portion, dark platy, is called Word no. I by P. B. King, just above reefy beds on crest of
706-ь	Word	slope on N-side of road Ls. between ls. no. 3 and ls. no. 4, 320 m W of junction of Hess Canyon with S
706-c	Word	branch of Hess Canyon, Hess Canyon quadrangle, Texas About middle of ls. no. 2, SW slope and crest of low hill 5.92 km N 36° E (air-
707-d	Wolfcamp (top)	line) of Hess ranch house, Hess Canyon quadrangle, Texas Knob on W side of entrance to Sullivan Ranch Canyon, 5.6 km N 7° E of Decie
707-e	Wolfcamp (lower)	ranch house, Altuda quadrangle, lexas 8.48km (airline) N 5° W of Decie ranch house, 1.44km (airline) S 25° E of Sulli-
707 - ha	Skinner Ranch	Van Peak, on nose of foothill SE of Sullivan Peak, Alfuda quadrangle, Texas Poplar tank member (Productid bed), above beaded Leptotid, loose on small knob, 800 m SE of Hill 5300, 4.32 km (airline) N 12° W of Decie Ranch house, Altuda
709-с	Road Canyon (Word)	quadrangle, Jexas Ls. with Coscinophora, on W slope hill, 1.52 km N 9° E of Hill 4920, Altuda quad- rangle Texas. Also 1.8 km S 57° E of Sullivan Peak (BM 6125)
719-x	Road Canyon	2.272 km N, 19° W of Hess ranch house, 880 m N 65° E of Hill 5453, Hess Canyon
720-d	Road Canyon (top)	Lens 7.5 m above is, mapped as Lower Word, 1.856 km S 31° E of BM 4973, Gilliand Canvon Altuda quadrangle Texas
720-g	Skinner Ranch	Decie Ranch Member (<i>Scacchinella</i> beds), at break in slope 2.16 km S 83° W of Hill 5816, NW side Hess Ranch, Hess Canyon quadrangle, Texas
721-ј	Road Canyon	2.32 km N 19° W of Hess Ranch House, Hess Canyon quadrangle, Texas
721-s	Road Canyon	2.708 km N 12° W of Hess Ranch House, Hess Canyon quadrangle, lexas
721-t 721-u	Cathedral Mountain	912 m N 80° E of Hill 4910, Altuda quadrangle, Texas, approximately loc. 120 of
721-1	Road Canvon	1.92 km S 25° E of BM 4973. Gilliland Canvon, Altuda quadrangle, Texas
721-z	Road Canyon	1.52 km S 28° E of BM 4973 Gilliland Canyon, Altuda quadrangle, Texas
722-g	Road Canyon	2.32 km S 72° W of Hill 4910, 2 km N 9° E of Hill 4920, Altuda quadrangle, Texas
722-1	Skinner Ranch	Sullivan Peak Member, 2.768 km S 1 ¹ / ₂ ° E of old Payne Ranch, W flank of Dugout Mtn., Monument Spring quadrangle, Texas
725-c	Bone Spring	39m above Hueco ls., E side of Hill 4402, N end of Baylor Mts., W side Texas Hwy. 54, 960m S 22 ¹ / ₂ ° W of BM 3806, Van Horn (30') quadrangle, Texas
725-d	Bone Spring	Same as 725-c, but 32.4 m above Hueco ls.
726-d	Road Canyon	Small "Leptodus" bed, at 1484 m elevation, 2.192 km S 4° W of Willis Ranch, 1.568 km N 68° E of Hill 5801, Hess Canyon quadrangle, Texas
7 26- 0	Cathedral Mountain	1.728 km S 2° E of Hill 5507, 1.648 km S 76° W of old Word Ranch, Hess Canyon quadrangle, Texas
726-r	Word	Ls. no. 2, China Tank Member, 2.288 km N 70° W of old Word Ranch, Hess Can- von quadrangle. Texas
726-z	Road Canyon (lower)	1.648 km N 43° E of old Word Ranch, 848 m S 20° E of Hill 5461, Hess Canyon quadrangle, Texas
727-a	Skinner Ranch (Sullivan Peak)	2.608 km S 50° E of old Payne Ranch, 592 m N 31° W of Hill 5195, Dugout Mtn., Monument Spring quadrangle, Texas
728	Cherry Canyon	Getaway ls. Member, near break in the slope on middle leader on the W side of the airway station road, between the highway and the pipeline road, on the crest of the ridge, Guadalupe Mtns., Texas
731	Bell Canyon	Hegler Member, top of Hill 5130, 800 m SSW of Pinyon Tank, S of Getaway Gap, Guadalupe Peak quadrangle, Texas
735-a	Road Canyon	Lower Word Is, old Word Ranch, Hess Canyon quadrangle, Texas

The appendix on the preceding page is a

Register of West Texas Permian Chiton Localities

Literature Cited

BATTEN, ROGER LYMAN

- NTTEN, KOGER LYMAN 1958. Permian Gastropoda of the southwestern United States. 2. Pleurotomariacea: Portlockellidae, Phymatopleuridae, and Eotomari-idae. Bull. Am. Mus. Nat. Hist. 114 (2): 157-246; plts. 32-42; (2) Userb. 1959. 17 text figs.; 29 tables (3 March 1958)
- 1972. Permian gastropods and chitons from Perak, Malaysia. Bull Am. Mus. Nat. Hist. 147 (1): 1-44; 52 text figs. (7 February 1972)

BRADY, L. F. 1955. Possible nautiloid mandibles from the Permian of Arizona. Journ. Paleont. 29: 102 - 104; plt. 21

- BRANSON, CARL C. 1948. Bibliographic index of Permian invertebrates. 1948. Bibliographic index of Permian inverte Am., Mem. 26. Class Amphineura: 760 - 762 Geol. Soc. (26 February 1948) DALL, WILLIAM HEALEY
- 1882. On the genera of chitons. Proc. U. S. Nat. Mus. 4: 279 - 291 (pp. 279-288, 1 February; pp. 289-291 13 March)
- GIRTY, GEORGE H. 1909. The Guadalupian fauna. U. S. Geol. Surv. Prof. Pap. 58; 450 - 451; plt. 29, figs. 21, 21a

HOARE, R. D., M. T. STURGEON & T. B. HOARE

- Middle Pennsylvanian (Allegheny Group) Polyplacophora from 1972. Ohio. Journ. Paleont. 46 (5): 675 - 680; 3 plts. (September 1972) HOWSE, RICHARD
 - 1857. Notes on the Permian system of the counties of Durham and Northumberland. Ann. Mag. Nat. Hist. (2) 19: 235 - 285; plt.4, figs. 16, 17
 - 1858. Notes on the Permian system of Northumberland and Durham; being a supplement to the catalogue of fossils of the Permian system of these counties. Trans. Tyneside Natur. Field Club 3 (1854-1858): 244, 271 - 272; plt. 11, figs. 16, 17

KING, WILLIAM

- 1851. A monograph of the Permian fossils of England. Paleontograph. Soc. 1850: 201 - 203, 247 (Appendix); plt. 16, figs. 9 - 14 Kirkby, J. W.
- 1857. On some Permian fossils from Durham. Quart. Journ. Geol. Soc. 13: 213 - 218; plt. 7. London

NEWELL, NORMAN D. et al.

1953. The Permian complex of the Guadalupe Mountains region, Texas and New Mexico. W. H. Freeman & Co., San Francisco. 236 pp.; 32 plts.

SMITH, ALLYN G.

- 1960. Amphineura. In Treatise on Invertebrate Paleontology, ed. Moore, Part I, Mollusca 1, pp. 41 - 76; figs. 31 - 35
- YOCHELSON, ELLIS L. 1956. Permian gastropods of the southwestern United States. 1. Euomphalacea, Trochonematacea, Pseudophoracea, Anomphalacea. Craspedostomatacea, and Platyceratacea. Bull. Am. Mus. Nat. Hist. 110 (3): 177-275; plts. 9-24; 4 text figs.; 35 tables 1971. The Permian nautiloid mandible Rhynchoteuthis kaibabensis re-
 - Journ. Paleont. 45 (1): 130 133; interpreted as a polyplacophoran. (January 1971) text figs. 1A - 1]

Morphological Correlations

Between Dorid Nudibranch Predators and Sponge Prey

BY

STEPHEN A. BLOOM

Department of Biology, University of South Florida, Tampa, Florida 33620

(1 Text figure)

INTRODUCTION

MORPHOLOGICAL AND BEHAVIORAL specializations of a predator to its prey have been noted for birds (EDINGTON & EDINGTON, 1972; LACK, 1947; PERKINS, 1903), reptiles (PIANKA, 1969), fish (EMERY, 1973; FRYER, 1959; JONES, 1968; KEAST & WEBB, 1966), grasshoppers (ISELY, 1944) and opisthobranchs (EVANS, 1953; GRAHAM, 1938; HURST, 1965; LALLI, 1970; YOUNG, 1969). These specializations have been inferred to have arisen due to competition (BROWN & WILSON, 1956; CODY, 1968; DARLING-TON, 1972; HUTCHINSON, 1966) or due to selection to minimize utilization costs on patchy, divergent prey (BLOOM, 1974).

While feeding and digestive morphologies of spongerasping dorid nudibranchs (sensu YOUNG, 1969) are well known (see Discussion below for references), and skeletal morphologies of the sponge prey are available in the taxonomic literature, little attention has been paid to correlations of predator-to-prey morphologies within the sponge-rasping dorid nudibranch category.

By critically examining dorid nudibranch and sponge morphologies with regard to predatory correlations, certain logical predictions of prey-preferences by the predators result. The prediction that dorids with certain character-sets should preferentially consume sponges with certain skeletal organizations can be tested with laboratory preference studies and observations of diets of dorids in nature. Partial literature reviews exist (FOURNIER, 1969; MILLER, 1961; THOMPSON, 1964), although many of the reported observations do not fulfill the criteria listed by SWENNEN (1961) that the animal be found on or near the food, that the animal be observed to ingest the food, and that the animal be known to subsist on the food. The combination of these 3 reviews, recent work by many authors and my own observations provides an adequate data-basis to test the hypothesis that a correlation between dorid and sponge morphologies exists.

METHODS AND MATERIALS

Specimens of Archidoris montereyensis (Cooper, 1862), A. odhneri (MacFarland, 1966), Cadlina luteomarginata MacFarland, 1905, Diaulula sandiegensis (Cooper, 1862), Anisodoris nobilis (MacFarland, 1905) and Discodoris heathi MacFarland, 1905 were collected from several intertidal and many subtidal stations (by SCUBA diving) near San Juan Island, Puget Sound, Washington between March 1970 and December 1973. The estimated wet weight of each nudibranch, its species and the location and depth of the station were recorded. Over 600 individual nudibranchs were collected for study. The dorids were placed in thoroughly cleaned one liter capacity plastic containers with screened sides in clean shallow aquaria with flowing, filtered seawater at the Friday Harbor Marine Laboratories, Friday Harbor, Washington.

In order to identify prey species, feces were collected and processed according to the procedure outlined in LIGHT *et al.* (1954) and were examined to determine the spicule types present and thus the species of sponge consumed. Identifications were made according to BAKUS (1966) and DE LAUBENFELS (1932, 1961). Dr. Bakus kindly verified the identifications of all species of sponge.

The shape of the radula teeth for those dorids known to eat sponge and for which radular teeth drawings or specimens were available was quantified. Radulae of the dorid species mentioned above were removed from the animals, cleaned in dilute NaOCl, dehydrated in 70 and 100% ethanol and mounted in Canada balsam. Before placement of the coverslip, teeth from the functional area of the radula (anterior one-third of the rows, middle onethird of a pair of rows) were pulled free. Teeth were then drawn, using a camera lucida, at $100\times$.

Tooth shape, or the degree of "hook" of the teeth was defined as the amount of concavity of the inner margin of the tooth. The method for measuring the concavity is shown in Figure 1. Curvature was averaged over 3 teeth

Table 1

Sponge species reported in dorid nudibranch diets.

	Skeletal description	Skeleton described by
HEXACTINELLIDA		
Rossellidae		
<i>Rossella racovitzae</i> Topsent	moderately hard; crumbly; long spicules	(Burton, 1929; Dayton, per. comm.)
Rossella nuda Vopsent Scolymastra jonbini	harder than <i>R. racovitxae</i> ; long spicules	(Burton, 1929; Dayton, per comm.) 1
CALCAREA		
Calcinoa		
LEUCETTIDAE		
Leucetta barbata (Duchassing & Michelotti) ²	confused mass of triaxons; resembles Demospongiae	(de Laubenlels, 1950)
DEMOSPONGIAE		
Tetractinomorpha HOMOSCLEROPHORIDA		
Plakindae Plakortis simplex Schulze CHORISTUDA	confused mass of spicules	(de Laubenfels, 1950; 1954)
STELLETTIDAE		
<i>Stelletta estrella</i> de Laubenfels HADROMERIDA	cartilaginous with radiate tracts	(de Laubenfels, 1932)
CLIONIDAE		
Chona celala Grant	confused mass of spicules	(Bergquist, 1965a; de Laubenlets, 1961)
SUBERITIDAE		
Stylotella columella	confused mass of spicules	(de Laubenfels, 1954)
Suberues ficus (Jounston)	confused mass of spicules	(de Laubenteis, 1952; weits, 1960)
Perpios aptoos de Laubemeis	confused mass to vague reticulation	(de Laubemeis, 1954)
Terpios sp. Terpios staki do Lauboutoli	continued many of enteriles	(Hachtal 1065; do Laubankale 1050)
FPIPOLASIDA	confused mass of spicules	(Treemen, 1905), de Laubenieus, 1950)
Бынулы		
Tethya amantia (Pallas)	radiate tracts without reticulation	(Bergauist 1965a; de Laubeufels, 1932)
Ceractinomorpha		(iviginar toost or many many toos)
II ALICHONDRIDA		
HALCHONDRIDAE		
Hahchondra dura Lingren	confused mass of spicules	(de Laubenfels, 1951)
Halu hondrae pancea (Pallas)	confused mass of spicules; crumb- of-bread	(de Laubenfels, 1932)
Hahchondria sp.		1
11ymeniacidonidai		
Hymeuiaeidon perlece (Montagu) ³	confused mass of spicules	(Bergquist, 1970)
Hymemacidon sp.		1
Prunos phlox de 1 aubentels	confused mass of spicules	(de Laubenfels, 19 <mark>54)</mark>
Prianos sp.		1
11IGGINSIDAF		
Thggmsia sp.	confused mass to vague reticulation	(Higgms, 1877 ¹)
DIMENSION		
Desmacidan as	and the number of the others for and an	(D
HALICLOSIDAN	assumed to resemble other in order	(Bergquist, 19050)
Gellins sp	confused mass to isodictval	(de Laubenfels 1939))
Hahelona permollis (Bowerbank) Hahelona sp.	unispicular isodictyal reticulation	(Wells, 1960; de Laubenfels, 1961)
Remera japonica Kadota	unispicular isodictval reticulation	(de Laubenfels, 1936 ¹)
Remera okadai Kadota	internet interval terretration	
Call ysponglidae		
Callyspongia diffusa (Ridley)	heavy libro-reticulation	(de Laubenfels, 1954)

Table 1 (continued)

	Skeletal description	Skeleton described by
POECILOSCLERIDA		
MYXILLIDAE		
Acarnus erithacus de Laubenfels	large tracts without reticulation	(Bakus, 1966)
Myxilla agennes de Laubenfets	vague isodictyal reticulation	(de Laubenfels, 1932)
Myxilla incrustans (Esper)	confused mass to isodictyal reticulation	(Bakus, 1966)
MICROCIONIDAE		
Isocioua lithophoenix de Laubenfels	dense isodictyal reticulation	(de Laubenfels, 1932)
Microciona astrasanguines Bowerbank	irregular reticulation	(Simpson, 1968)
Microciona coccinea Bergquist	prominent tracts without reticulation	(Bergquist, 1961)
Microciona haematodes de Laubenfels	isodictyal reticulation	(de Laubenfels, 1957)
Microciona seriata (Grant) ⁴	prominent reticulation	(Simpson, 1968)
Psammascidae		
Kaneohea poni de Laubenfels	isodictyal reticulation	(de Laubenfels, 1950)
Ophlitaspongiidae		
Ophlitaspongia pennata (Lambe)	ladder-like tracts without reticulation	(Bakus, 1966)
PLOCAMIIDAE		
Hoplocamia neozelanicum	thinly-incrusting; spiculose	(Morton and Miller, 1968)
Plocamia karykina de Laubenfels	ladder-like tracts without reticulation	(Bakus, 1966)
Adochdae		
Petrosia dura	densefy-packed spicules with stout	(Dendy, 1924 ¹ ; de Laubenfels, 1951 ¹)
	reticulation	
Toxidocia violacea de Laubenfels	isodictyal reticulation	(Bergquist, 1965b; de Laubenfels, 1950)
Amphilectidae		
Biemma vhadia de Laubenfels	spicules bound into bundles without	(Bakus, 1966)
	reticulation	
MYCALIDAE		
Esperiopsis originalis de Laubentels	reticulated with bound spicules	(Bakus, 1966)
Mycale adhaerens (Lambe)	massive reticulation with bundled	(Bakus, 1966)
	spicutes	()
Mycale lingua (Bowerbank)	highly reticulated with bundled spicules	(Bakus, 1966)
Mycale macginitiei de Laubenfels	confused mass of spicules	(de Laubenfels, 1932)
Mycale manuakea de Laubenfels	farge tracts without reticulation	(de Laubenfets, 1951)
Mycale psila (de Laubenfels)	highly reticulated with bundled spicules	(Bakus, 1966)
Zygerherbe hyaloderma de Laubenfets	ladder-like reticulations	(Bakus, 1966)
DICTYOCERTÍDA		(
Api ysillidae		
Aplysilla glacialis (Dybowski)	many fibers without reticulation	(de Laubenfels, 1932)
Dysideidae		, , , , , , , , , , , , , , , , , , , ,
Dysidea fragilis (Montagu)	irregular reticulation	(Bergquist, 1961; de Laubenfels, 1936)
SPONGIIDAE		
Cacospongia scalaria	soft consistency; skeletal form unclear	(de Laubenfels, 1936 ¹)

¹skeletal characteristics assumed to be similar to other species in same genus or family
²synonomous with *L. solida* (de Laubenfels, 1950) and *L. floridana*, changed to above by Burton (1963)
³synonomous with *H. caruncula* and *H. sanguinea* (Bergquist, 1970)
⁴synonomous to *Ophlitaspongia seriata* (Simpson, 1968)

Table 2

Radular characteristics and caecate nature of known sponge-consuming dorid nudibranchs. (Literature citations coded by number and listed at end of table; r=radula description; c=caecum description; nd=not described.) See figure 1 for explanation of curvature of teeth.

	Cascate (C)	Radular characteristics							
Dorid	or Acaecate (A)	Radular Mean	Formula Range	Curvature of teeth	Reference				
Dorididae									
Kentodoridinae				0.21					
Jorunna tomentosa (Cuvier)	(C)	19(23.0.23)	14-24(20-25.0.20-25)	0.21	r-1, ²⁶				
Archidoridinae				0.99	C-**				
Archidoris monterevensis (Cooper)	(C)	32(53.0.53)	27-36(42-70.0.42-70)	0.12	r-2, 14, 16, 20				
	(-)	,	, , ,		c-4				
Archidoris pseudoargus ^a (Rapp)	(C)	43(72.0.72)	29-56(37-100.0.37-100)	0.19	r^{-1} , ⁵ , ¹¹ , ²³				
Analistania atallifana (Nimanai Sara)	(C)	90(49.0.40)	80/00 45 0 80 45)	0.00	C-8				
Archidoris siemjera (vayssiere)	(C)	30(42.0.42)	30(39-45.0.39-45)	0.23	r-22, 23				
Archidoris odhneri ^b (MacFarland)	(C)	34(55.0.55)		0.36	r-15				
	(-)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			c-4				
Archidoris flammea (Alder & Hancock)	(C)	25(36.0.36)			r-1				
					c-nd				
Archidoris wellingtonensis (Abraham)	(C)	42(61.0.61)	33-48(50-75.0.50-75)		r-6, 7				
Class I and Ash Illiford (Classica)	(0)	10/50 0 500			C-7				
Clenodoris flabellifera (Cheeseman)	(C)	40(50.0.50)			r-0, /				
Doridinae				0.93	c-na				
Doris verrucosa (Cuvier)	(C)	32(37.0.37)	24-42(25-39.0.25-39)	0.20	r-10, 22, 23				
	(-)	" _ (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0120	c-nd				
Doriopsis granulosa Pease	(C)	34(44.0.44)	30-38(40-48.0.40-48)	0.11	r- ²⁹				
					C- ²⁹				
Doriopsis pecten (Collingwood)	(C)	31(35.0.35)	30-32(28-42.0.28-42)	0.21	r- ²⁹				
Device in the Device	(0)	00/05 0 051	00 00/04 00 0 04 00	0.00	C- ²⁹				
Doriopsis viriais Pease	(C)	28(25.0.25)	26-30(24-26.0.24-26)	0.38	r-29, 50				
Chromodoridinae				0.23	(
Hypselodoris n.s.#1	(C)	28(21.0.21)		0.00	r- ²⁹				
					c-29				
Hypselodoris peasei (Bergh)	(C)	27(19.0.19)	26-28(17-20.0.17-20)	0.00	r - ²⁹				
					C- ²⁹				
Hypselodoris kayae Young	(C)	28(21.0.21)		0.13	r- ³⁰				
Hupselodoris vibrata Posso		47(99.0.99)	90 56/00 90 0 00 901	0.95	c-nd				
Typselouons cionaa Tease	(C)	47(55.0.55)	36-30(26-36.0.26-36)	0.25	C-29				
Glossodoris macfarlandi ^c (Cockerell)	(C)	62(49.0.49)	62(47-50.0.47-50)	0.18	r-15, 21				
	(-)	(,	,		c-nd				
Glossodoris amoena Cheeseman	(C)	79(99.0.99)	69-88(77-120.0.77-120)	0.42	r- ⁷ , ²⁰				
					c-nd				
Glossodoris tricolor (Cantraine)	(C)				r-nd				
Cadling byteomargingty MucKeyland	(C)	06/51.0.51)	00 114/47 50 0 47 50	0.01	c-nd				
Cautha tuteomarginata Macrarland	(C)	90(51.0.51)	90-114(47-58.0.47-58)	0.21	r-14, 15, 21				
Chromodoris dalli Bergh	(C)	112(28.1.28)	112(27-29-1-27-29)	0.99	r-2				
0	()			0.00	c-nd				
Chromodoris lilacina (Gould)	(C)	64(40.0.40)	61-66(41-48.0.41-48)	0.25	r- ²⁹				
					C- ²⁹				

-

F

	Casasta (C)	Radular characteristics							
Dorid	or Acaecate (A)	Radular Mean	Formula Range	Curvature of teeth	Reference				
Chromodoris californiensis ^d (Bergh)	(C)	88(119.0.119)	82-92(98-132.0.98-132)	0.68	r- ² , ²¹ c-nd				
Halgerdinae				0.63					
Halgerda rubra Bergh	(C)	34(53.0.53)		0.63	r- ²⁹ C- ²⁹				
Trippinae				0.13					
Trippa scabriuscula (Pease)	(A)	17(18.0.18)		0.13	r- ²⁹ c-nd				
Discodoridinae				0.11					
Discodoris heathi MacFarland	(A)	21(40.0.40)	20-22(36-42.0.36-42)	0.00	r^{-14} , 15 , 17 , 21 c^{-4}				
Discodoris fragilis (Alder & Hancock)	(A)	20(29.0.29)	18-22(28-30.0.28-30)	0.22	r- ²⁹ c-nd				
Aldisinae				0.33					
Austrodoris macmurdensis Odhner	(A)	18(25.0.25)	13-22(19-240.019-24)	0.32	r- ²⁰ c-nd				
Rostanga pulchra MacFarland	(A)	76(76.0.76)	65-80(39-90.0.39-90)	0.33	r- ¹⁴ , ¹⁵ , ¹⁶ , ¹⁷ , ²¹ C- ¹⁹				
Rostanga arbutus (Angas)	(A)								
Rostanga rubicunda (Cheeseman)	(A)	69(82.0.82)			r- ⁷ c-nd				
Rostanga rufescense Iredale & O'Donoghue	(A)								
Aldisa sanguinea (Cooper)	(A)	67(86.0.86)	60-70(70-100.0.70-100)		r- ¹⁴ , ¹⁵ , ¹⁷ , ²¹ c-nd				
Diaululinae				0.60					
Diaulula sandiegensis (Cooper)	(A)	21(29.0.29)	19-23(25-34.0.25-34)	0.37	r- ¹⁵ , ¹⁵ , ¹⁷ , ²¹ C- ⁴				
Peltodoris atromaculata Bergh	(A)	20(56.0.56)		0.50	$r^{-22}, 2^{3}$				
Anisodoris nobilis (MacFarland)	(A)	26(58.0.58)	23-27(55-62.0.55-62)	0.94	r^{-14} , 15, 17, 21				
EVADDANCHIDAE				0.29					
Hexabranchus marginatus (Quoy & Gaimard)	(C)	45(78.0.78)		0.29	r~ ²⁹ C- ²⁹				
NDRODORIDIDAE									
Dendrodoris nigra (Stimpson)	(A)	no radula			C-29				
Doriopsilla albopunctata ^f (Cooper)	(A)	no radula			c-nd				

Table 2 [continued]

¹ -Alder & Hancock, 1845	⁹ -Fournier, 1969	¹⁷ -Marcus, 1961	²⁵ -Rose, 1971
² -Bergh, 1879	¹⁰ -Franz, 1970	¹⁸ -Millott, 1937	²⁶ -Steinberg, 1961
³ -Bergh, 1880	¹¹ -Hancock & Embleton, 1852	¹⁹ -Moore, unpublished	²⁷ -White, 1938
⁴ -Bloom, 1974	¹² -Hutton, 1881	²⁰ -Odhner, 1934	²⁸ -Winckworth, 1951
⁵ -Burn, 1968	¹³ -Iredale & O'Donoghue, 1923	²¹ -O'Donoghue, 1927	²⁹ -Young, 1966
6-Eliot, 1877	¹⁴ -MacFarland, 1905	²² -Provot-Fol, 1951	³⁰ -Young, 1967
⁷ -Eliot, 1907	¹⁵ -MacFarland, 1966	²³ -Provot-Fol, 1954	³¹ -Young, 1969
⁸ -Forrest, 1953	¹⁶ -Marcus, 1959	²⁴ -Roller, 1970	

^a synonomous with A. brittanica and A. tuberculata, ²⁷, ²⁸

b (Austrodoris odhneri), (²⁴), ⁵ c (Chromodoris macfarlandi), ²³

^d (Hypselodoris californiensis), ²⁴; (Glossodoris californiensis), ²¹ ^e (Doris coccinea), (Rostanga coccinea), ¹³ ^f (Dendronotus futva), ²⁶

		(-			aecate	o c	- 1)
lifficulty of ecate classes ded as footnotes.		Hexabranchidae	Kentodoridinae	Archidoridinae	Doridinae	Chromodoridinae	Halgerdinae	
asing on aca	suərəbahba əlaəye alisq əlaəye alişa əlaəye alişan ələəye alişan əlişan əliş əlişan əlişan əlişan əlişan əlişan əlişan əlişan əlişan əlişan əl							
A thus incre unknown a ure citation	Pocamia karykina Potrosia dura Potrosia dura Potrosia kyaloderma Potrosia karykina Plocamia karykina							
plexity and to caecate, er to literati	Гохадосіа violacea Містосіопа seriala Isocliona hihophoenix Ophliaspongia neoselanicum Hophocamia neoselanicum					52		
keletal com e divided in ne table refe	Haliclona sp. Kaneohea poni Reniera japonica Reniera okadai Microciona haematodes					16 22 16	22	
g order of s Dorids are mbers in th	Hierory dermollis Myxilla agennes Myxilla incrusians Myxilla incrusians Myxilla incrusians Myxilla incrusians Maliclona permollis		22	14		05		
t increasing scriptions). ls). The nu	Mycale manakea Aplysila glacialis Microciona coccinea Gellius sp.					22 23 16 22 16		
e ranked in skeletal dex kt for detai	Βιεπιπα εμασία Τογνάστικα στο ματικα Τογνάς τη ανταπίτα Ασαπτια στο αυταπίτα Βιεπιπα τη ασία Βιεπιπα τη ασία Βιεπιπα τη ασία Για τη ασία			17		14 19		
sponges are ment and ure (see ter	Terpios aploos Higginsia sp. Rossella racovitae Rossella racovitae				22	05		
eractions. S omic place oth curvat	Suberites ficus Stylotella columella Mycale macginitiei Terpios Seleki			05 13 05	22			
sponge inte 1 for taxon nd mean to	Hymeniacidon perleve Hymeniacidon sp. Prianos phlox Prianos sp. Cliona celata			20 11 19 14 19	22			
y of dorid- (see Table d by taxa a	Leucetta solida Plakoris simplex Halichondria dura Halichondria panicea Halichondria sp.	22	24	25 26 19 05 19 05		22 05		
A global surve fragmentation and further ranke		Hexabranchus marginatus	forunna tomentosa	Archidoris montereyensis Archidoris pseudoargus Archidoris pseudoargus Archidoris vellingtonensis Doris verrucosa Archidoris stellifera Ctenodoris flabellifera Archidoris odhneri	Joriopsis granulosa Doriopsis pecten Doriopsis viridis	Hypselodoris sp. Hypselodoris peasei Hypselodoris peasei Blossodoris macfarlandi Cadlina luteomarginata Hypselodoris uibrata Glossodoris tricolor Glossodoris amoena Chromodoris amoena	Halgerda rubra	

·										
Trippinae	05 Discodoridinae	Aldisinae	ette	C3eC3	Diaululinae	05	Dendrodorididae	It		han 10% of diets omitted
 	22 05	14	928 32 28	31	14	30 16		Difficu	$\begin{array}{c} 29-12, \ 14\\ 30-5, \ 16\\ 31-3, \ 19\\ 32-2, \ 9\end{array}$	oecies representing less t
22	05		0404 (03	05 05	16.05		oonge skeleton	22-Young, 1966 23-Young, 1967 24-6, 17, 18 25-5, 7 26-6, 13, 17, 20, 21	27-1, 15 $28-2, 7, 9, 10$ $^{1}s_{1}$
			60	31 29		05	16	ase of fragmentation of the s	Garstang, 1889 McBeth, 1970 Miller, 1961 Millott, 1937 Morton & Miller, 1968	Rose, 1971 Thompson, 1964
		08080				16 16	16 16	Gradient of	yton et al., 1970 ¹ 15 Laubenfels, 1927 16 ran, 1951 (in Cook, 1966) 17 her, 1937 (McMillian, 1942) 18 tealv, 1999 (in Cook, 1966) 19	rrest, 1953 20 20 21 200, 1969 21 20 21 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20
scula	thi 05 pilis 05	nea acmurdensis	hra hra	cens cunda	iegensis 05 maculata	bilis	igra 22 opunctata	Easy	Abeloos, 1932 8-Da 1971 9-de 58 10-Dc (acFarland, 1966) 11-Fi 12-Fi	967 13-Fo 14-Fo
Trippa scabriu	Discodoris hea Discodoris frag	Aldisia sangui Austrodoris m	Rostanga pulc Rostanga arbu	Rostanga rufe. Rostanga rubii	Diaulula sand	Anisodoris no	Dendrodoris 1 Doriopsilla all		1-Abeloos & 2-Anderson, 3-Ayling, 19(4-Baba (in M	6-Carefoot, 1 7-Cook, 1962

Vol. 18; No. 3

-

Figure 1

Construct a line (AB) parallel to the shaft; construct a line (CD) perpendicular to AB and touching the tooth tip; construct a line (EF) perpendicular to CD such that the distance between E and F is the maximum possible. The curvature index is:

(distance between E and F) (distance between C and D)

per radula for all specimens prepared by the author. Curvature for other species was based on a similar analysis of published tooth drawings.

Preference experiments were done as follows: In the laboratory, food mosaics consisting of pieces (approximately 1 cm³) of Halichondria panicea (Pallas, 1766), Haliclona permollis (Bowerbank, 1866), Myxilla incrustans (Esper, 1805 - 1814) and Mycale adhaerens (Lambe, 1894) (1 : 1 : 1 : 1 by volume) were made available to 3 specimens each of Archidoris montereyensis, A. odhneri and Anisodoris nobilis, and to 2 specimens of Diaulula sandiegensis. Each dorid species was presented with its own mosaic to eliminate interspecific behavioral effects. Water entered the experimental chambers centrally at a flow rate of approximately 100 ml/minute. All dorids were starved for 7 days prior to the start of the experiment (sufficient time for all spicules from previous feedings to be voided from the dorids' digestive tracts). After 5 hours, the dorids were removed from the chambers. They were then cleaned and isolated in clean oneliter capacity plastic containers. Feces were collected, processed and examined as described above. Several random samples were taken from the mosaics and were similarly processed to form a comparison control for density of sponge spicules.

The relative percentage of the characteristic spicule types for each sponge in each fecal sample was estimated. Similarly, the percentage of each spicule type in the controls was estimated. Within the sampling error of the estimation procedure, the amounts of whole sponge available and the amounts of the characteristic spicule types in the controls were identical and exhibited a ratio of 1:1: 1:1. The mean percent for each sponge for each dorid species was then calculated.

RESULTS

The taxonomy and skeletal characteristics of sponges known to occur in dorid nudibranch diets are presented in Table 1. Radular characteristics and the presence or absence of a caecum for dorids known to consume sponges are presented in Table 2.

The species of sponges occurring at frequencies of 10% or more in the feces of the dorids mentioned previously, along with an extensive review of dorid-sponge interactions, are presented in Table 3. The taxonomic arrangement of the genera in Table 1 is primarily based on that given by BERGQUIST *et al.* (1971), BERGQUIST & HARTMAN (1969) and BAKUS (1966, personal communication).

The statistical analyses of the distribution of points in Table 3 is given in Table 4. *Diaulula sandiegensis* failed to feed during the course of the preference experiments and therefore will be omitted from further mention. The results of the preference experiments are presented in Table 5.

DISCUSSION

Diets are the result of complex interactions between predator abilities and preferences and prey availability (EM-LEN, 1966, 1968; MENGE, 1972; PAINE & VADAS, 1969). There are two underlying assumptions in demonstrating a correlation of predator-to-prey morphologies from diets in nature. The current concept of optimal food selection is that, through the process of evolution acting on the predator, the food that maximizes fitness will become the preferred prey (EMLEN, 1968). If the supply of food is sufficient and historically stable, specialization is the predicted outcome of natural selection. Furthermore, the specialization is usually reflected in predator morphology (see Copy, 1968). If the supply or stability of the food is low, exploitation of a range of similar foods, *i.e.*, generalization, is predicted. The assumption is then that the most preferred prey will be that prey for which the predator is morphologically adapted.

The second assumption relates to prey availability. If the predator is forced to expand its diet to compensate for scarce resources (MACARTHUR & PIANKA, 1966), diet expansion could act to obscure any correlations of predator-to-prey morphologies. If a correlation of predatorto-prey morphologies can be demonstrated, altering resource availability from the actual (but unknown) quantities to lower levels of availability might destroy the correlation due to generalization of the predator's diet, but an increase in resource availability can only improve the correlation. The same logic holds with regard to misidentifications of species and crroneous dietary information. These effects would more likely contribute "noise" than information content. Thus a demonstration of the correlation utilizing dietary data from nature would support the hypothesis, while failure to demonstrate the correlation does not necessarily imply negation of the hypothesis, but would cast doubt on the concept of specializations in the sponge-rasping dorid nudibranchs.

The radular anatomy of dorids has been critically examined (YOUNG, 1966, 1969; ROSE, 1971) and the great variance in radula tooth morphology has given rise to the speculation that there might be a correlation to the sponge prey (THOMPSON & BEBBINGTON, 1973). The digestive morphologies of many dorids have been described (HAN-COCK & EMBLETON, 1852; BERGH, 1879, 1880; MARCUS, 1961; MORSE, 1968; ROSE, 1971; YOUNG, 1966) and are of 2 types: either the animal possesses a caccum, a spiculecompacting organ of the stomach (MILLOTT, 1937; FOR-

Sponge skeletons	Species	Caecate dorids	Acaecate dorids	Chi- Square	Degrees of freedom	Probability
	Leucetta solida					
non-reticulated	to	32	19			
	Myxilla incrustans					
				5.66	1	< 0.025
	Desmacidon sp.					
reticulated	to	6	15			
	Mycale adhaerens					
	Leucetta solida					
non-reticulated	to	22	8			
	Higginsia sp.					
	Rossella racovitzae					
bundled	to	10	11			
	Myxilla incrustans					
	Desmacidon sp.					
isodictyal	to	6	-4	17.81	4	< 0.001
	Isocliona lìthophoenix					
	Ophlitaspongia pennata					
ladder-like	to	0	-4			
	Plocamia karykina					
	Zygerherpe hyaloderma					
reticulated	to	0	7			
	Mycale adhuerens					

Table 4

Statistical analyses of point distributions in Table 3 (null hypothesis is randomness). The axes in Table 4 were divided as indicated and the number of symbols per cell were totaled.